
KAUNAS UNIVERSITY OF TECHNOLOGY

INFORMATICS FACULTY

Software engineering

Project work report

KAUNAS 2011

2

Table of Contents

Requirements documentation ... 5

Aim of the project:... 5

Project members: .. 5

Product overview and use cases .. 5

Architectural requirements .. 7

Functional requirements .. 7

Non-functional requirements ... 7

Technical requirements: .. 7

Minimum: .. 7

Recommended: ... 7

Environmental requirements ... 8

Interaction requirements (e.g. how the software should work with other systems) 8

Architecture/Design documentation.. 9

Architecture design ... 9

Interface design ... 11

Technical documentation .. 12

Patents, licenses .. 12

Tools ... 12

Methods .. 13

Testing .. 15

Static analysis .. 15

Testing tool ... 15

Cppcheck checks for these errors: .. 15

64-bit portability .. 15

3

Auto Variables ... 16

Boost usage ... 16

Bounds checking .. 16

Class .. 16

Exception Safety .. 17

Match assignments and conditions .. 17

Memory leaks (address not taken) ... 17

Memory leaks (class variables) ... 17

Memory leaks (function variables) ... 17

Memory leaks (struct members) .. 17

Non reentrant functions... 18

Null pointer.. 18

Obsolete functions ... 18

Other ... 19

STL usage ... 20

Uninitialized variables .. 20

Unused functions ... 21

UnusedVar ... 21

Unit testing .. 21

Unit testing library (tool).. 21

QTestLib Features .. 22

Tests .. 22

Threat modeling and risk analysis .. 24

Threat Analysis and Modeling v3.0 (tool) ... 24

Threats .. 24

4

Trust flows ... 27

Connect action trust flow ... 27

Remote control from viewer action trust flow.. 27

Remote host control action trust flow .. 27

User documentation .. 28

User tutorial .. 28

Host tutorial .. 28

Viewer tutorial ... 28

5

Product documentation

Requirements documentation

Aim of the project:
Develop an open source alternative to commercial TeamViewer product. Ours product will
support these basic features:

• Remote desktop access
• Remote mouse control
• Remote keyboard control
• Ability to view remote computer file system without interfering

Project members:

• Justas Šalkevičius - developer
• Julius Rentas - developer
• Kęstutis Vaškevičius - website / developer
• Kastytis Venckys - documentation

Product overview and use cases

• Simple
• Easy to use
• Lightweight

http://en.wikipedia.org/wiki/Use_case

6

Host use case diagram:

Figure 1 Host Use case diagram

Host can:

• can register account
• close the program

Viewer use case:

Figure 2 Host Use case diagram

Viewer can:

• Connect to the Host computer
• Control remote desktop
• Close program

7

Architectural requirements

• Identify possible challenges
• Choose most suitable programming language
• Choose what tools and software will be needed for project realization

Functional requirements

• Show program GUI
• Allow to choose to be: Host or Viewer
• Connect to the internet and host computer
• Show remote desktop in program window
• Allow to control remote mouse
• Allow to control remote keyboard
• Ability to view remote computer file system without interfering
• Allow to close program

Non-functional requirements

• Simple GUI
• Quick response
• Small resource usage

Technical requirements:

Minimum:

• 1GHz x86-x64 architecture CPU.
• 512 MB of RAM.
• Integrated GPU.
• TCP/IP Network connection.
• Mouse and keyboard.
• 25 MB of available hard-disk space

Recommended:

• 1GHz x86-x64 architecture CPU.
• 1 GB of RAM for XP users and 2GB of RAM for W7 users.

http://en.wikipedia.org/wiki/Systems_architecture
http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Non-functional_requirements

8

• Integrated GPU.
• TCP/IP Network connection.
• Mouse and keyboard.
• 30 MB of available hard-disk space

Environmental requirements

• Program must connect to computers that have external IP address.

Interaction requirements (e.g. how the software should work with other systems)

• Friendly work with other internet programs
• Antivirus programs shouldn’t consider program as a threat
• OS firewall must allow program to connect to the internet

9

Architecture/Design documentation

Architecture design

• UML classes

http://en.wikipedia.org/wiki/Software_architecture

10

Figure 3 ScreenViewer UML classes

11

Interface design

• GUI example:

Figure 4 ScreenViewer window

• Host button – allow to control your computer
• Viewer button – Connect to remote desktop
• Register button – Create your account
• Username – your chosen name
• Password – your made-up password

http://en.wikipedia.org/wiki/Interface_design

12

Technical documentation

Patents, licenses

• Project uses the MIT license:

Copyright (c) 2011 Bricks

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Tools

• Qt uses standard C++ but makes extensive use of a special code generator (called the
Meta Object Compiler, or moc) together with several macros to enrich the language. Qt
can also be used in several other programming languages via language bindings. It runs
on the major desktop platforms and some of the mobile platforms. It has extensive
internationalization support. Non-GUI features include SQL database access, XML
parsing, thread management, network support, and a unified cross-platform API for file
handling.

• PHP is a general-purpose server-side scripting language originally designed for web
development to produce dynamic web pages. For this purpose, PHP code is embedded
into the HTML source document and interpreted by a web server with a PHP processor
module, which generates the web page document. It also has evolved to include
a command-line interface capability and can be used in standalone graphical
applications. PHP can be deployed on most web servers and as a standalone interpreter,
on almost every operating system and platform free of charge. There is also commercial

http://en.wikipedia.org/wiki/Patent
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Language_binding
http://en.wikipedia.org/wiki/Internationalization
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Dynamic_web_page
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Standalone_software
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Platform_(computing)

13

software such as RadPHP, a rapid application development framework for the PHP
language.

• Apache is developed and maintained by an open community of developers under the
auspices of the Apache Software Foundation. The application is available for a wide
variety of operating systems, including Unix, FreeBSD, Linux, Solaris, Novell
NetWare, AmigaOS, Mac OS X, Microsoft Windows, OS/2, TPF, and eComStation.
Released under the Apache License, Apache is open-source software. Apache supports a
variety of features, many implemented as compiled modules which extend the core
functionality. These can range from server-side programming language support to
authentication schemes. Some common language interfaces support Perl, Python, Tcl,
and PHP.

• MySQL is a relational database management system (RDBMS) that runs as a server
providing multi-user access to a number of databases. Free-software-open source
projects that require a full-featured database management system often use MySQL.
For commercial use, several paid editions are available, and offer additional
functionality. MySQL is a popular choice of database for use in web applications, and is a
central component of the widely used LAMP web application software stack—LAMP is
an acronym for "Linux, Apache, MySQL, Perl/PHP/Python".

Methods

• Extreme Programming (XP) is a software development methodology which is intended
to improve software quality and responsiveness to changing customer requirements. As
a type of agile software development, it advocates frequent "releases" in short
development cycles, which is intended to improve productivity and introduce
checkpoints where new customer requirements can be adopted. This method has
several potential drawbacks, including problems with unstable requirements, no
documented compromises of user conflicts, and a lack of an overall design specification
or document. (http://en.wikipedia.org/wiki/Extreme_Programming)

• Pair programming is an agile software development technique in which two
programmers work together at one workstation. One types in code while the other
reviews each line of code as it is typed in. The person typing is called the driver. The
person reviewing the code is called the observer (or navigator). The two programmers
switch roles frequently. While reviewing, the observer also considers the strategic
direction of the work, coming up with ideas for improvements and likely future
problems to address. This frees the driver to focus all of his or her attention on the
"tactical" aspects of completing the current task, using the observer as a safety net and
guide. (http://en.wikipedia.org/wiki/Pair_programming)

• Test-driven development (TDD) is a software development process that relies on the
repetition of a very short development cycle: first the developer writes a failing
automated test case that defines a desired improvement or new function, then

http://en.wikipedia.org/wiki/RadPHP
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/Novell_NetWare
http://en.wikipedia.org/wiki/Novell_NetWare
http://en.wikipedia.org/wiki/AmigaOS
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/OS/2
http://en.wikipedia.org/wiki/Transaction_Processing_Facility
http://en.wikipedia.org/wiki/EComStation
http://en.wikipedia.org/wiki/Apache_License
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Mod_perl
http://en.wikipedia.org/wiki/Mod_python
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/LAMP_(software_bundle)
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Computer_programmer
http://en.wikipedia.org/wiki/Code_%28computer_programming%29
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Test_case

14

produces code to pass that test and finally refactors the new code to acceptable
standards. (http://en.wikipedia.org/wiki/Test-driven_development)

Figure 5 TDD method diagram

http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Test-driven_development

15

Testing

Static analysis

• Static program analysis (also Static code analysis or SCA) is the analysis of computer
software that is performed without actually executing programs built from that
software (analysis performed on executing programs is known as dynamic analysis). In
most cases the analysis is performed on some version of the source code and in the
other cases some form of the object code. The term is usually applied to the analysis
performed by an automated tool, with human analysis being called program
understanding, program comprehension or code review.

• The sophistication of the analysis performed by tools varies from those that only
consider the behavior of individual statements and declarations, to those that include
the complete source code of a program in their analysis. Uses of the information
obtained from the analysis vary from highlighting possible coding errors (e.g., the lint
tool) to formal methods that mathematically prove properties about a given program
(e.g., its behavior matches that of its specification).

• It can be argued that software metrics and reverse engineering are forms of static
analysis. In fact deriving software metrics and static analysis are increasingly deployed
together, especially in creation of embedded systems, by defining so called software
quality objectives.

Testing tool

• Cppcheck is an open source static code analyzer tool for C/C++ programming languages.
It's a versatile tool that can check non-standard code.

• Cppcheck supports a wide variety of static checks that may not be covered by the
compiler itself. These checks are static analysis checks that can be performed at a
source code level. The program is directed towards static analysis checks that are
rigorous, rather than heuristic in nature.

Cppcheck checks for these errors:

64-bit portability

Check if there are 64-bit portability issues:

http://en.wikipedia.org/wiki/Program_analysis_%28computer_science%29
http://en.wikipedia.org/wiki/Program_analysis_%28computer_science%29
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Object_code
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/Program_comprehension
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Lint_programming_tool
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Software_metrics
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Heuristic

16

• assign address to/from int/long

Auto Variables

A pointer to a variable is only valid as long as the variable is in scope. Check:

• returning a pointer to auto or temporary variable
• assigning address of an variable to an effective parameter of a function
• returning reference to local/temporary variable
• returning address of function parameter

Boost usage

Check for invalid usage of Boost:

• container modification during BOOST_FOREACH

Bounds checking

Out of bounds checking

Class

Check the code for each class:

• Missing constructors
• Are all variables initialized by the constructors?
• Warn if memset, memcpy etc. are used on a class
• Are there unused private functions
• 'operator=' should return reference to self
• 'operator=' should check for assignment to self
• Constness for member functions

http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=CheckMemset

17

Exception Safety

Checking exception safety:

• Throwing exceptions in destructors
• Throwing exception during invalid state
• Throwing a copy of a caught exception instead of rethrowing the original exception

Match assignments and conditions

Match assignments and conditions:

• Mismatching assignment and comparison => comparison is always true/false
• Mismatching lhs and rhs in comparison => comparison is always true/false
• Detect matching 'if' and 'else if' conditions

Memory leaks (address not taken)

Not taking the address to allocated memory.

Memory leaks (class variables)

If the constructor allocates memory then the destructor must deallocate it.

Memory leaks (function variables)

Is there any allocated memory when a function goes out of scope?

Memory leaks (struct members)

Don't forget to deallocate struct members.

18

Non reentrant functions

Warn if any of these non reentrant functions are used:

• Asctime
• crypt
• ctermid
• ctime
• ecvt
• fcvt
• fgetgrent
• fgetpwent
• fgetspent
• gcvt
• getgrent
• getgrgid
• getgrnam
• gethostbyaddr
• gethostbyname
• gethostbyname2
• gethostent
• getlogin
• getnetbyaddr
• getnetbyname
• getnetgrent

• getprotobyname
• getpwent
• getpwnam
• getpwuid
• getrpcbyname
• getrpcbynumber
• getrpcent
• getservbyname
• getservbyport
• getservent
• getspent
• getspnam
• gmtime
• localtime
• rand
• readdir
• strtok
• tempnam
• tmpnam
• ttyname

Null pointer

Null pointers:

• null pointer dereferencing

Obsolete functions

Warn if any of these obsolete functions are used:

• bcmp
• bcopy
• bsd_signal

• bzero
• ecvt

• fcvt • ftime
• gcvt

• getcontext
• gethostbyaddr
• gethostbyname
• getwd
• index
• makecontext
• pthread_attr_getstackaddr
• pthread_attr_setstackaddr

• rindex
• scalbln
• swapcontext
• ualarm
• usleep
• vfork
• wcswcs

Other

Other checks:

• Assigning bool value to pointer (converting bool value to address)
• bad usage of the function 'sprintf' (overlapping data)
• division with zero
• using fflush() on an input stream
• scoped object destroyed immediately after construction
• assignment in an assert statement
• sizeof for array given as function argument
• sizeof for numeric given as function argument
• incorrect length arguments for 'substr' and 'strncmp'
• invalid usage of output stream. For example: std::cout << std::cout;'
• wrong number of arguments given to 'printf' or 'scanf;'
• C-style pointer cast in cpp file
• redundant if
• bad usage of the function 'strtol'
• unsigned division
• Dangerous usage of 'scanf'
• passing parameter by value
• Incomplete statement
• check how signed char variables are used
• variable scope can be limited
• condition that is always true/false
• unusual pointer arithmetic. For example: "abc" + 'd'
• redundant assignment in a switch statement
• redundant strcpy in a switch statement
• look for 'sizeof sizeof ..'
• look for calculations inside sizeof()
• assignment of a variable to itself
• mutual exclusion over || always evaluating to true
• exception caught by value instead of by reference
• Clarify calculation with parentheses

http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=OverlappingData
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=CheckUnsignedDivision
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=IncompleteStatement
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Charvar

20

• using increment on boolean
• comparison of a boolean with a non-zero integer
• comparison of a boolean expression with an integer other than 0 or 1
• suspicious condition (assignment+comparison)
• suspicious condition (runtime comparison of string literals)
• suspicious condition (string literals as boolean)
• duplicate break statement
• unreachable code
• testing if unsigned variable is negative
• testing is unsigned variable is positive
• using bool in bitwise expression
• Suspicious use of ; at the end of 'if/for/while' statement.
• incorrect usage of functions from ctype library.
• optimization: detect post increment/decrement

STL usage

Check for invalid usage of STL:

• out of bounds errors
• misuse of iterators when iterating through a container
• mismatching containers in calls
• dereferencing an erased iterator
• for vectors: using iterator/pointer after push_back has been used
• optimisation: use empty() instead of size() to guarantee fast code
• suspicious condition when using find
• redundant condition
• common mistakes when using string::c_str()
• using auto pointer (auto_ptr)
• useless calls of string functions

Uninitialized variables

Uninitialized variables:

• using uninitialized variables and data

21

Unused functions

Check for functions that are never called.

UnusedVar

UnusedVar checks

• unused variable
• allocated but unused variable
• unred variable
• unassigned variable
• unused struct member

Unit testing

• Unit testing is a method by which individual units of source code are tested to
determine if they are fit for use. A unit is the smallest testable part of an application. In
procedural programming a unit could be an entire module but is more commonly an
individual function or procedure. In object-oriented programming a unit is often an
entire interface, such as a class, but could be an individual method. Unit tests are
created by programmers or occasionally by white box testers during the development
process.

• Ideally, each test case is independent from the others: substitutes like method stubs,
mock objects, fakes and test harnesses can be used to assist testing a module in
isolation. Unit tests are typically written and run by software developers to ensure that
code meets its design and behaves as intended. Its implementation can vary from being
very manual (pencil and paper) to being formalized as part of build automation.

Unit testing library (tool)

• The QTestLib framework, provided by Nokia, is a tool for unit testing Qt based
applications and libraries. QTestLib provides all the functionality commonly found in
unit testing frameworks as well as extensions for testing graphical user interfaces.

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/White-box_testing
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Method_stub
http://en.wikipedia.org/wiki/Mock_object
http://en.wikipedia.org/wiki/Mock_object#Mocks_and_fakes
http://en.wikipedia.org/wiki/Test_harness
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Build_automation
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d

22

QTestLib Features

QTestLib is designed to ease the writing of unit tests for Qt based applications and libraries:

Feature Details
Lightweight QTestLib consists of about 6000 lines of code and 60 exported symbols.
Self-contained QTestLib requires only a few symbols from the Qt Core library for non-gui testing.
Rapid testing QTestLib needs no special test-runners; no special registration for tests.
Data-driven testing A test can be executed multiple times with different test data.
Basic GUI testing QTestLib offers functionality for mouse and keyboard simulation.
Benchmarking QTestLib supports benchmarking and provides several measurement back-ends.
IDE friendly QTestLib outputs messages that can be interpreted by Visual Studio and

KDevelop.
Thread-safety The error reporting is thread safe and atomic.
Type-safety Extensive use of templates prevents errors introduced by implicit type casting.
Easily extendable Custom types can easily be added to the test data and test output.

Tests

Starting /home/kestutis/programming/KTU/screenviewer/src/scrview/untitled...
********* Start testing of TestScreenshot *********
Config: Using QTest library 4.6.2, Qt 4.6.2
PASS : TestScreenshot::initTestCase()
PASS : TestScreenshot::testNew()
PASS : TestScreenshot::testResize()
PASS : TestScreenshot::testFormat()
PASS : TestScreenshot::cleanupTestCase()
Totals: 5 passed, 0 failed, 0 skipped
********* Finished testing of TestScreenshot *********
********* Start testing of TestCapturer *********
Config: Using QTest library 4.6.2, Qt 4.6.2
PASS : TestCapturer::initTestCase()
PASS : TestCapturer::testFpm()
PASS : TestCapturer::testCommon()
PASS : TestCapturer::testStartStop()
PASS : TestCapturer::cleanupTestCase()
Totals: 5 passed, 0 failed, 0 skipped
********* Finished testing of TestCapturer *********
********* Start testing of TestSsPacket *********
Config: Using QTest library 4.6.2, Qt 4.6.2
PASS : TestSsPacket::initTestCase()
PASS : TestSsPacket::testEmptyMake()
PASS : TestSsPacket::testMake()
PASS : TestSsPacket::testMakeAndGet()

http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d
http://developer.qt.nokia.com/doc/qt-4.7/qtestlib-manual.html#id-3ee1c789-a943-4c0d-906f-1b3d8e41c11d

23

PASS : TestSsPacket::testSetNewContent()
PASS : TestSsPacket::testPacketSize()
PASS : TestSsPacket::cleanupTestCase()
Totals: 7 passed, 0 failed, 0 skipped
********* Finished testing of TestSsPacket *********
********* Start testing of TestMousePacket *********
Config: Using QTest library 4.6.2, Qt 4.6.2
PASS : TestMousePacket::initTestCase()
PASS : TestMousePacket::testEmptyMake()
PASS : TestMousePacket::testMake()
PASS : TestMousePacket::testMakeAndGet()
PASS : TestMousePacket::testSetNewContent()
PASS : TestMousePacket::testPacketSize()
PASS : TestMousePacket::cleanupTestCase()
Totals: 7 passed, 0 failed, 0 skipped
********* Finished testing of TestMousePacket *********
********* Start testing of TestConfirmPacket *********
Config: Using QTest library 4.6.2, Qt 4.6.2
PASS : TestConfirmPacket::initTestCase()
PASS : TestConfirmPacket::testMake()
PASS : TestConfirmPacket::testMakeAndGet()
PASS : TestConfirmPacket::testPacketSize()
PASS : TestConfirmPacket::cleanupTestCase()
Totals: 5 passed, 0 failed, 0 skipped
********* Finished testing of TestConfirmPacket *********
/home/kestutis/programming/KTU/screenviewer/src/scrview/untitled exited with code 0

24

Threat modeling and risk analysis

Threat Analysis and Modeling v3.0 (tool)

Building a secure application and requires an understanding of the threats against that application. The
challenge has been the difficulty in adopting threat modeling practice for software application
development. The Microsoft Application Consulting; Engineering (ACE) team developed a process that
allows non-security subject matter experts to produce feature-rich threat models.

The process:

• Provides a consistent methodology for objectively identifying and evaluating threats to
applications

• Translates technical risk to business impact
• Empowers a business to manage risk
• Creates awareness among teams of security dependencies and assumptions

Microsoft Application Threat Modeling is a critical security activity, enabling effective application risk
management during the SDLC and beyond.

Microsoft Threat Analysis & Modeling tool facilitates creation and assimilation of threat models. Now
from entered non-security already-known data a feature-rich threat model can be produced. Along with
automatically identifying threats, the tool can produce such valuable security artifacts as:

• Data access control matrix
• Component access control matrix
• Subject-object matrix
• Data flow
• Call flow
• Trust flow
• Attack surface
• Focused reports

Threats

A threat is defined as an undesired event, a potential occurrence, often best described as an
effect that might damage or compromise an asset or objective. It may or may not be malicious
in nature.

http://archive.msdn.microsoft.com/tam

25

Threats

DDOS
Risk Rating: 9
Risk Response: Reduce
Confidentiality: No
Integrity: No
Availability: Yes

Task Items

Request size should be constrained

Consider performance as a requirement

Implement appropriate exception handling

Display generic error messages

DDOS ip blocking

Viewer leaves PC on
Risk Rating: 3
Risk Response: Avoid
Confidentiality: Yes
Integrity: No
Availability: No

Collects TCP packets
Risk Rating: 6
Risk Response: Accept
Confidentiality: Yes
Integrity: Yes
Availability: No

Task Items

Use cryptographically strong keys

Use well-known cryptographic algorithms

Salt the hash value with a unique random bits

Hacks SQL DB
Risk Rating: 3
Risk Response: Avoid
Confidentiality: Yes
Integrity: Yes
Availability: Yes

26

Task Items

SQL Wildcard queries should be avoided

Perform context sensitive HTML encoding

Untrusted input should be validated (Managed)

Use parameterized SQL statement

Changesd packets data
Risk Rating: 3
Risk Response: Avoid
Confidentiality: Yes
Integrity: Yes
Availability: No

Task Items

Use cryptographically strong keys

Use well-known cryptographic algorithms

Utilize platform to store secret key

Utilize IPSec with Encryption

Salt the hash value with a unique random bits

Brute force password
Risk Rating: 2
Risk Response: Avoid
Confidentiality: Yes
Integrity: Yes
Availability: Yes

Task Items

Enforce password complexity requirement

27

Trust flows

Connect action trust flow

Remote control from viewer action trust flow

Remote host control action trust flow

28

User documentation

User tutorial

Host tutorial

1. Start ScreenViewer program.

2. Create account by entering your username and password in opened program window.

3. Press Host button.

4. Wait for a viewer to connect to your computer.

Note for 2: Please be sure that your computer is connected to the internet and OS firewall is
not blocking program.

Viewer tutorial

1. Start ScreenViewer program.

2. Enter Host‘s username and password in opened window.

3. Press View button.

4. Control remote destop.

Note for 2: Please be sure that your computer is connected to the internet and OS firewall is
not blocking program.

	Requirements documentation
	Aim of the project:
	Project members:
	Product overview and use cases
	Architectural requirements
	Functional requirements
	Non-functional requirements
	Technical requirements:
	Minimum:
	Recommended:

	Environmental requirements
	Interaction requirements (e.g. how the software should work with other systems)

	Architecture/Design documentation
	Architecture design
	Interface design

	Technical documentation
	Patents, licenses
	Tools
	Methods

	Testing
	Static analysis
	Testing tool
	Cppcheck checks for these errors:
	64-bit portability
	Auto Variables
	Boost usage
	Bounds checking
	Class
	Exception Safety
	Match assignments and conditions
	Memory leaks (address not taken)
	Memory leaks (class variables)
	Memory leaks (function variables)
	Memory leaks (struct members)
	Non reentrant functions
	Null pointer
	Obsolete functions
	Other
	STL usage
	Uninitialized variables
	Unused functions
	UnusedVar

	Unit testing
	Unit testing library (tool)
	QTestLib Features

	Tests

	Threat modeling and risk analysis
	Threat Analysis and Modeling v3.0 (tool)
	Threats
	Trust flows
	Connect action trust flow
	Remote control from viewer action trust flow
	Remote host control action trust flow

	User documentation
	User tutorial
	Host tutorial
	Viewer tutorial

